LLM

1 基础理论

  • Few/Zero-Shot Learning
  • In-Context Learning
  • Chain-of-Thought
  • Emergence
  • Scaling Prediction
  • Parameter-Efficient Learning (Delta Tuning)

What——大模型学到了什么?

​ 大模型的涌现现象 Wei et al. Emergent Abilities of Large Language Models. TMLR 2022.

How——如何训练好大模型?

​ 训练规律 Kaplan et al. Scaling Laws for Neural Language Models. 2020

Why——大模型为什么好?

​ 关于大模型各种特性的收集 https://github.com/openbmb/BMPrinciples

2 网络架构

Transformer以外的更多可能(下一代基础网络框架模型)

3 高效计算

  • 训练
  • 推理
    • 模型压缩:模型剪枝、知识蒸馏、参数量化

4 高效适配

  • 提示学习

    [1] Tom Brown et al. Language Models are Few-shot Learners. 2020.
    [2] Timo Schick et al. Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference. EACL 2021.
    [3] Tianyu Gao et al. Making Pre-trained Language Models Better Few-shot Learners. ACL 2021.

  • 参数高效微调

    [4] Ning Ding et al. Parameter-efficient Fine-tuning for Large-scale Pre-trained Language Models. Nature Machine Intelligence.
    [5] Neil Houlsby et al. Parameter-Efficient Transfer Learning for NLP. ICML 2020.
    [6] Edward Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. ICLR 2022.

    当基础模型规模增长到一定程度,不同参数高效微调方法的性能差距缩小,且性能与全参数微调基本相当

5 可控生成

  • 指令微调
  • 提示工程
  • 思维链

6 安全伦理

  • 安全:容易被植入后门

  • 伦理:与人类价值观对齐

    此前研究表明模型越大会变得越有偏见 Lin et al. TruthfulQA: Measuring How Models Mimic Human Falsehoods. ACL 2022.

7 认知学习

工具学习

8 创新应用

生物、法律……

9 数据评估

  • 数据

    从多模态数据中学习更加开放和复杂的知识

    [1] OpenAI. GPT-4 Technical Report. 2023.
    [2] Driess D, Xia F, Sajjadi M S M, et al. PaLM-E: An embodied multimodal language model[J]. arXiv preprint arXiv:2303.03378, 2023.

  • 评估

    • 自动评价

      选择题 Chiang, Wei-Lin et al. Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality. 2023.

    • 模型评价

      更强大的大模型做裁判 Huang, Yuzhen et al. C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models. arXiv preprint arXiv:2305.08322, 2023.

    • 人工评价

10 易用性

参考文献

[1] https://www.zhihu.com/question/595298808