1 基础理论
- Few/Zero-Shot Learning
- In-Context Learning
- Chain-of-Thought
- Emergence
- Scaling Prediction
- Parameter-Efficient Learning (Delta Tuning)
- …
What——大模型学到了什么?
大模型的涌现现象 Wei et al. Emergent Abilities of Large Language Models. TMLR 2022.
How——如何训练好大模型?
训练规律 Kaplan et al. Scaling Laws for Neural Language Models. 2020
Why——大模型为什么好?
关于大模型各种特性的收集 https://github.com/openbmb/BMPrinciples
2 网络架构
Transformer以外的更多可能(下一代基础网络框架模型)
3 高效计算
- 训练
- 推理
- 模型压缩:模型剪枝、知识蒸馏、参数量化
4 高效适配
-
提示学习
[1] Tom Brown et al. Language Models are Few-shot Learners. 2020.
[2] Timo Schick et al. Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference. EACL 2021.
[3] Tianyu Gao et al. Making Pre-trained Language Models Better Few-shot Learners. ACL 2021. -
参数高效微调
[4] Ning Ding et al. Parameter-efficient Fine-tuning for Large-scale Pre-trained Language Models. Nature Machine Intelligence.
[5] Neil Houlsby et al. Parameter-Efficient Transfer Learning for NLP. ICML 2020.
[6] Edward Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. ICLR 2022.当基础模型规模增长到一定程度,不同参数高效微调方法的性能差距缩小,且性能与全参数微调基本相当
5 可控生成
- 指令微调
- 提示工程
- 思维链
6 安全伦理
-
安全:容易被植入后门
-
伦理:与人类价值观对齐
此前研究表明模型越大会变得越有偏见 Lin et al. TruthfulQA: Measuring How Models Mimic Human Falsehoods. ACL 2022.
7 认知学习
工具学习
8 创新应用
生物、法律……
9 数据评估
-
数据
从多模态数据中学习更加开放和复杂的知识
[1] OpenAI. GPT-4 Technical Report. 2023.
[2] Driess D, Xia F, Sajjadi M S M, et al. PaLM-E: An embodied multimodal language model[J]. arXiv preprint arXiv:2303.03378, 2023. -
评估
-
自动评价
选择题 Chiang, Wei-Lin et al. Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality. 2023.
-
模型评价
更强大的大模型做裁判 Huang, Yuzhen et al. C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models. arXiv preprint arXiv:2305.08322, 2023.
-
人工评价
-